Jin CS, Lovell JF, Chen J & Zheng G
ACS Nano, 2013
Tumor hypoxia is increasingly being recognized as a characteristic feature of solid tumors and significantly complicates many treatments based on radio-, chemo-, and phototherapies. While photodynamic therapy (PDT) is based on photosensitizer interactions with diffused oxygen, photothermal therapy (PTT) has emerged as a new phototherapy that is predicted to be independent of oxygen levels within tumors. It has been challenging to meaningfully compare these two modalities due to differences in contrast agents and irradiation parameters, and no comparative in vivo studies have been performed until now. Here, by making use of recently developed nanostructured self-quenched porphysome nanoparticles, we were able to directly compare PDT and PTT using matched light doses and matched porphyrin photosensitizer doses (with the photosensitizer being effective for either PTT or PDT based on the existence of nanostructure or not). Therefore, we demonstrated the nanostructure-driven conversion from the PDT singlet oxygen generating mechanism of porphyrin to a completely thermal mechanism, ideal for PTT enhancement. Using a novel hypoxia tumor model, we determined that nanostructured porphyrin PTT enhancers are advantageous to overcome hypoxic conditions to achieve effective ablation of solid tumors.
Comments are closed, but trackbacks and pingbacks are open.