Lin Q, Chen J, Ng KK, Cao W, Zhang Z & Zheng G
Pharmaceutical Research, 2013
Purpose: Molecular therapeutics often require an effective nanoparticle-based delivery strategy to transport them to cytosolic organelles to be functional. Recently, a cytosolic delivery strategy based on the scavenger receptor class B type I (SR-BI) mediated pathway has shown great potential for the effective delivery of theranostics agents into the cytoplasm of cells without detrimental endosomal entrapment. This study elucidates this unique delivery mechanism for improving cytosolic drug delivery. Methods: Multifluorophore-labeled HDL-mimicking peptide phospholipid scaffold (HPPS) nanoparticles were developed. Fluorescence imaging was utilized to examine HPPS transporting payloads into cells step by step through sequential inhibition studies. Results: HPPS specifically recognizes and binds to SR-BI, then interacts with SR-BI, which results in direct transport of payload molecules into the cell cytoplasm without entire particles internalization. The cytosolic transport of payloads occurred through a temperature- and energy-independent pathway, and was also different from actin- and clathrin-mediated endocytosis. Furthermore, this transport was significantly inhibited by disruption of lipid rafts using filipin or methyl-β-cyclodextrin. Conclusions: The cytosolic delivery of payloads by HPPS via SR-BI targeting is predominately mediated through a lipid rafts/caveolae-like pathway. This cytosolic delivery strategy can be utilized for transporting molecular therapeutics that require their action sites to be within cytosolic organelles to enhance therapeutic effect.
Comments are closed, but trackbacks and pingbacks are open.