Huynh E, Lovell JF, Fobel R & Zheng G
Small, 2014
Efforts to develop self-contained microreactors and artificial cells have been limited by difficulty in generating membranes that can be robustly and repeatedly manipulated to load and release cargo from phospholipid compartments. Here we describe a purely optical method to form pores in a membrane generated from porphyrin-phospholipid conjugates electro-assembled into microscale giant porphyrin vesicles and manipulated using confocal microscopy. The pores in the membrane resealed within a minute allowing for repeated pore formation with precise spatial and temporal control and optical gating to allow selective diffusion of biomolecules across the membrane. Temporal control of pore formation was illustrated by performing sequential DNA hybridization reactions. A biotin-avidin based strategy was developed to selectively attach enzymes to the interior of the vesicle, demonstrating spatial control and the potential of giant porphyrin vesicles as versatile microreactors.
Comments are closed, but trackbacks and pingbacks are open.