Cheng M, Overchuk M, Rajora MA, Lou JWH, Chen W, Pomper MG, Chen J, Zheng G

ACS Molecular Pharmaceutics

DOI: 10.1021/acs.molpharmaceut.1c00819

Theranostic nanoparticles aim to integrate diagnostic imaging and therapy to facilitate image-guided treatment protocols. Herein, we present a theranostic nanotexaphyrin for prostate-specific membrane antigen (PSMA)-targeted radionuclide imaging and focal photodynamic therapy (PDT) accomplished through the chelation of metal isotopes (In, Lu). To realize nanotexaphyrin’s theranostic properties, we developed a rapid and robust 111In/Lu-nanotexaphyrin radiolabeling method using a microfluidic system that achieved a high radiochemical yield (>90%). The optimized metalated nanotexaphyrin displayed excellent chemical, photo, and colloidal stabilities, potent singlet oxygen generation, and favorable plasma circulation half-life in vivo (t1/2 = 6.6 h). Biodistribution, including tumor accumulation, was characterized by NIR fluorescence, SPECT/CT imaging, and γ counting. Inclusion of the PSMA-targeting ligand enabled the preferential accumulation of 111In/Lu-nanotexaphyrin in PSMA-positive (PSMA+) prostate tumors (3.0 ± 0.3%ID/g) at 48 h with tumor vs prostate in a 2.7:1 ratio. In combination with light irradiation, the PSMA-targeting nanotexaphyrin showed a potent PDT effect and successfully inhibited PSMA+ tumor growth in a subcutaneous xenograft model. To the best of our knowledge, this study is the first demonstration of the inherent metal chelation-driven theranostic capabilities of texaphyrin nanoparticles, which, in combination with PSMA targeting, enabled prostate cancer imaging and therapy.